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\ ABSTRACT

~“'!‘his paper establishes the existence of two solutions for some

gt
sample of the results. let g : R+ R be a c‘-functlon such that

lim g'(s) < x1 < 1lim g'(s), where X1 is the first eigenvalue of the
gr-e grie
Laplacian with Dirichlet boundary conditions, and the limits could be
infinite. Suppose that g behaves at +» 1like uP, 1 < p < (N + 2)/(N - 2)

+ -
or even like u(“ 2)/(n 2)/l.n u, where N > 3. Let { be a bounded smooth

domain in RN
which is > 0 in 0. Then given any h € C (1) such that [ hé = 0, there

is ty; € R such that the Dirichlet problem

and let ¢ be the first eigenfunction corresponding to A1,

-Au = g(u) +t$ +h, in @, u=0 on 23N

v
has at least two cz,a solutions for each ¢t < co. The author uses the
method of monotone iterations to obtain the first solution and a varjiational
argument to get the second. The variational solution is subsequently

regularized.
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ON THRE SUPERLIWEAR AMBROSETTI-PRODI PROBLEM
Djairo G. de Piguairedo®*

INTRODUCTION. let £ be a smooth bounded dowmain in R". We consider the semilinear

elliptic boundary value problem
(1) ~Au = g{x,u) + €(x) in @, u=0 on QY ,

vhere f(x) 4is some given c®-tunction in 92, and the nonlinearity ¢ satisfies the

smoothness condition below, besides other conditions that will be timely introduced as we

proceed:
(2) g : xR+ R is a c‘-tuncezon.

Problem (1) is said to be of the Ambrosetti-Prodi type if

(3a) 1im eup LXBL ¢ 5 ana (3B) A < lim inf axee)
sr-= s [l and s

where the inequalities hold uniformly in Q, and the limits could assume value

-» or +=, respectively, on the whole of I or on subsets of positive measure. Here

X1 denotes the first eigenvalue of the eigenvalue problem =Au = Au in @I, u=0 on
M. Let ¢ Dbe the eigenfunction corresponding to x, which is >0 in 2 and

’ f 02 = 1. And let W be the subspace of c®(1) generated by ¢, and
o {uectd : ] ué¢ = 0}. cConsequently any f e c¢® (@) can be uniquely written as
f=¢td+h, with tE&R and h € ll'. Using this decomposition we shall look at the

parametrized form of (1):
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(12) -Au = g{x,u) + ¢t +h in Q, u=0 on 20 .

Conditions (3a) and (3b) are implied by the more restrictive conditions (4a) and (4b),

respectively:
(4a) 1im sup q‘(x,-) < l1 . (4b) X‘ < 1lim inf g;(x.l) * o
- o [Acosasion For ——
NTIS GRA&I .
wvhere q; denotes the partial derivative of g with respect to s. DTIc TAB g
lannounceqd
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Viewing the future use of variational methods we suppose

+ .
(s) 1m LxB Ly B2 L wns,
T O N -2

8 * ®» will be necessary. Also by force of some

No assumption on the growth of g as

desirable Palais-Smale condition for a functional associated with our problem (1) we found

it necessary to assume the following technical condition, but only in the case N > 3

and (N + 1)/(N = 1) <o < (N + 2)/(N - 2):

sg(x,s) - 6G(x,s)
(6) lim int 2 2/(R+1) >0,

gtie s gi(x,s)

for some 0 > 2 ,

s
where G(x,s) = f g(x,E)dE.
0

Theorem 1. Assume (2), (3b), (4a), (5) and (6). Then for each given h e l'L there
2,a

exists t, € R such that (1t) has at least two C solutions for ¢t < to.

The first result of this sort was proved by Ambrosetti-Prodi [1], under much stronger .

assumptions, but yielding a sharper conclusion. 1In their work as well as in the subsequent

work of other authors, e.g., Berger-Podolak [2), Amann-Hess [3], Fucik (4], the

nonlinearity g 1is assumed to have linear growth. Kazdan~Warner (5] relaxed this

SO e YW Y TS ey P A A a1 %

condition but obtained only one solution. Dancer (6] obtains a second solution, provided

o0& (N+ 1)/(N=-1) in (5). He uses a topological degree argument, and a crucial point

in his proof is obtaining a priori estimates on the solutions of (‘t)' Under his

restriction on O these estimates are readily obtained using a technique due to Brézis-

Turner (7]. (N+ 1)/(N = 1) this is not a

For nonlinearities g growing faster than

simple matter, and as far as we know estimates are not available yet. We found it easier

to obtain a second solution in this case using a variational method. Here also there is a

delicate point which is the establishment of the Palais-Smale condition for some associated
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functional. We required a technical condition (6), which we believe to be not too
restrictive. Por example, pure powers like gi(x,s) = atx)sP for large s and
1<p<C(N+2)/(0~-2) do satisfy (6). More generally the condition introduced by
Ambrosetti-Rabinowitz (8] in similar situations also gives (6). Por the early history of
the Ambrosetti-Prodi problem see the survey paper [9). We should slso mention the work of
Berestycki-Lions [17] on the superlinear Ambrosetti-Prodi with convex nonlinearities g.
We mention that the steps in the proof of Theorem 1 will make clear that a theorem of
Ambrosetti-Rabinowitz [8) on the existence of positive solutions for some semilinear
elliptic equations can be slightly extended. Por completeness let us state it in case of

the lLaplacian.

Theorem 2 [Ambrosetti-Rabinowitz]. Let g : Q x R+ - R+ be a Carath&odory function
satisfying conditions (3b), (5) and (6) above as well as g(x,0) = 0 and
1im sup 3-(—’.5'3)- < x‘
0
Then the boundary value problem
-8u = g{x,u) in Q, u=0 on 23N
has a nontrivial positive solution u in H;. If g is ca then u € cz'a(ﬁ).

The above theorem should be compared with Theorem 2.3 in de Figueiredo-Lions-Nussbaum
{10]. Although Theorem 2 above applies to more general second order elliptic operators and
nonlinearities g depending on x, its technical condition (6) seems more restrictive
than the requirements made in Theorem 2.3.

The paper is divided in three parts. In the first section we prove that there exists

problem (1=) has a minimal negative solution

a tz @ R such that for all ¢t < tz,
2 -
u, € c*’®(@) such that the eigenvalue problem

t

-Av - q;(x,ue)v =yy in R, v=0 on 30,
has a positive first eigenvalue u,e In the second part we take an appropriate truncation

of the nonlinearity g and construct a functional whose critical points are precisely the

b o o

-3~




weak solutioas of "g). It is then shown that the minimal solutioa LS found in the
previous section is a locsl minimum of this functional. Under our assumptions the
functional is showa to satisfy the Palais~Smale condition. The mountain pass theores of

[8) is applied to get a second solution of (1) in l;. Its regularity in the case

GCW +2/M -2 is seen by the standard way using a bootstrap argument. The case
o= (N +2)/(8 ~2) requires & great deal more of work. We prove it in Section 3 using
an argument &ue to Brészis-Rato [11).

The novelty of the present work is the treatment of superlinear nonlinearities g¢

with growth at infinite "touching® the critical exponent (N + 2)/(N - 2), in the gense of

condition (S).

The author thanks Professor Antonio Mbrosetti for his hospitality at the Scuola

Internazionale Superiore di Studi Avansati (Trieste-ltalia), vhere part of this work was

done.




1. BEXISTEWCE OF A MININAL NEGATIVE SOLUTION. Since some of the assertions made in the

present section are true under weaker assumptions than the ones placed in Theorem 1, we
shall state them separately. Alesco this will make clear the role of (4a) which we believe
it could be replaced by (3a), as well as the role of (6) which eventually could be either

weakened or dropped altogether.

Lemma 3. Assume (3a) and (3b). Then there exists a number 7T, independent of h € -1'

such that “t) has no solution for t > t.

Proof. It follows from (3a) and (3b) that there are numbers C > 0 and y < x1 < ; such

} that

(7) g(x,s) > ys ~C and gix,s) > us - ¢

for all x @@ and all s € R. Take the inner product of “t) with ¢, integrate by

parts, and estimate l gl{x,u)$ using (7). This will give an upper. bound on the values
.

of t for which “t) has a solution. o

In this section we use the method of monotone iteration to get a minimal solution of

R e TET RSP

. (1,). We say that u e c2'°(§) is a subsolution of (1) if

(8) =8u € g(x,u) +té +h in R, u< 0 on 3.

[ T,

A supersolution is defined likewise by changing in (8) the inequalities € for ». It is

well known, gee for instance (12}, {13], that if “t) has a subsolution u and a

suspersolution \..\, such that u < ;, then (1") has a solution uy such that u < u, < \—;

and if u 1is any other solution with u € u < u  then LR € u. This solution is obtained

by an iterative method.

Lesma 4. Assume (3a) and (3b). Given heRm 1 and a _compact interval (a,b], there is a

function w e cz'u(ﬁ) with w =0 on 238 such that: (i) w 4is a subsolution of (1,)

for each t € (a,b], (i1) w< v for all v which are supersolutions of “t) with

t € [a,b). In rticular, w bounds from below all solutions of “t) for t € {a,b).

-5 o
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Proof. The unique solution w of the linear problem

Aw =pyw ~C + ap +h in 2, u=0 on M

where | and C were introduced in (7), satisfies all the requirements of the lemma. >

lemma 5. Agsume (3a) and (3b). Given h € il, there is a t, € R and a function W i

c?**@) which is <0 in 8, =0 in 32 and which is a supersolution for all problems

“t) with t < ¢t

1

Proof. Let € >0 and p > N be given. As a consequence of the Sobolev imbedding

1,a =

2
w'Piayce () and the strong maximum principle, we see that there are numbers

a,K > 0 such that

2,p

(9) XK<v-ap <0 in & for vew () with v =0 on 3N, and vl <¢

By the Lp-regulutity theory, the operator =-A with Dirichlet boundary condition has a

bounded inverse from P to W2'P, i.e., there is a constant C > 0 such that

(10) vl 2 < cizgl for ~Av =7 in 1, v=0 on 20
W2eP P

Let

(1) m = max{{g(x,8) + h(x)| : xe5, -XK € 8 € ¢}

and take subdomains n, and @ of @ such that Q1C §'C nzc §2C 1 and the Lebesgue

2
measure of n\n, is smaller than [e/cml®, where C and m have been introduced in (10)
and (11) respectively. Next define a c- function { which is 0 in n‘, =m in ﬂ\!!2
and assumes values between 0 and m in 02\9‘. Let v be the unique solution of the
Dirichlet problem =-Av =g in 2, v =0 on 23fl. Using (10) and the choice of 91 we
have
(12) v, _<crgt_ <comimn,lVPce

w2rP P 1

We claim that W = v - @) is a supersolution of (1,) provided we choose t sufficiently

large negatively 1Indeed, if x @ n\nz




- = 7 - ux,o -m - cX,Q > glx,v - a¢) + hix) - aX‘Q

where the inequality follows from (9), (11) and (12). If x € 02, use the fact that
$#(x) is bounded away from O by & positive congtant for x € 02 and obtain t such
that &(x) » g{x,v - a$) + h(x) + th. Then, for x € 2,
8w =~ -l ¢ > glx,v - ad) + hix) + (X -ad )0 .

Thus the lemsa is proved with t, = min(t ~ ak,, - ad,l.

Remark. Kazdan-warner (5] under the assumptions of Lemma 5 have proved by a similar
argument the existence of a supersolution which happens to be not negative in Q. It is

apparent that problem (1t) could have a supersolution for t > t,, although it is not

nacessarily negative.

Using the method of monotone iteration it follows

Corollary 6. Assume (3a) and (3b). Given h e ll, there is a t; € R such that problem

(1t) has a negative solution u, e Cz'a for each t < t,» Moreover u, is minimal, i.e.,

given any solution u of (1) we have u, < u.

Remark. Existence of a negative solution in the Ambrosetti-Prodi is implicit in the work
of Lazer-McKenna [14]. It was essentially noted in {9], but to our knowledge was first
explicitly proved by Solimini [15). That author [15] and Ambrosetti {16] have made a
relevant use of this fact to prove multiplicity results (existence of 3 solutions) in
certain Ambrosetti-Prodi problems. We remark that all these authors work with
nonlinearities g having linear growth, essentially

g(x,u) = u‘u+ - u-u- + ki(x,u)
where ut = 1lim g'(u) and k(x,u) is bounded. Their interesting proof of the existence

usie
of a negative solution apparently does not extend to our general case.

Lesma 7. Assume (3a) and (3b). Let u, be the minimal solution of (1t)‘ Then the first

eigenvalue "y of the eigenvalue problem

-7
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(13) -Av = g*({x,u )v=yuv in B, v=0 on M
( t

is >0,

Proof. We follow Dancer [6] in this argument. Suppose by contradiction that u, < 0 and ;

let v > 0 be the corresponding eigenfunction normalized by | v: » 1. Look at u, + 8v

and write

'““t +8v) = q(x.ut) +tp+h+ 6(9;(x.ut)v + Uyl

and using the expression

1
+ 8v) - q(x.nt) = £ g"(x,ut + rév)évar

q(x,ut

we obtain

1
--Mut +8v) = g(x,ut +8v) + th + h + Gv[{’ [g;(x,ut) - q;(x,ut + rdv)lar + u1]

By the continuity of g; the expression inside the brackets is < 0 for |81 small. So

if we take & < 0 and small we get

-Mut + 8v) > g(x.ut +8v) +epth

which says that L + 8v is a supersolution of (1.). By lLewma 4 and using the monotone

iteration method we would obtain a solution u of “t’ with u < u, + 8v ¢ u, in 8, .

ja]

contradicting Corollary 6.
We can prove that this is so under a slightly

For future purposes we need u' > 0.

stronger assumption than the one in Lesma 7.

lemma B. Assume (4a) and (3b). Given h € i", there is a t, € R such that the first

eigenvalue v, of problem (13) for ¢t & tz is positive.

Proof. lLet us assume by contradiction that there are tn 4 «» guch that the first

2
eigenvalue of (13) with t =t is 0. So thereis v, >0 in 8, J v, =1 such that
n n




e e

-dv, = g'(x,u_)v, .
tn ( ] tn tn

To simplify notation let us denote Yo = vt e - “t « Then
n n

2 2 2
f/ 9v 1% = fg;(x,un)vn <cfv =c

wvhere C = .up{q;(x.l)) xefl, 8 <0} which exists in view of assumption (4a). So we may
1 2
)
assume that vn - vo in “0' Vn * vo in L and a.e., and that vn(x. € hi(x) for

some h et.z. Clearly v 1 = 1., Then
0 Lz

(14) -favee=f g ve =] o o+f
n 0 n 0
where s, <0 and U <A, (used next) are such that
g {x.,8) ¢y for x ed, s« sy -
Prom (14) we obtain

(15) A, / v < ) ves J g;(x,un)v'le[“n”o]

Now we remark that a simple modification of Lemma 5 yields the following stronger
conclusion: given any B < 0 there is a t’ such that problem (1',_) for t < tB has a

supersolution W € fi¢. This implies that x[u »s.) tends to 0 a.e.. By Patou's lemma
n 9
we obtain from (15)
Ay Jovge <u [ vge
which is impossible.
Remark. It follows from Lemma 8 that
2 2 2
[ 1ewi®-{ g (x,u )v" > u, [ v, u, >0
On the other hand we know that there are constants c,c, > 0 such that
2 2 2 2
J 1wl ® - gl(x,u)v" > cf 1wl -cyf v
which is Garding’s inequality. Using the previous inequality we can easily see that

co-o.

-
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2. EXISTENCE OF THE SECOMD SOLUTION. Now fix t < t, and let w be the subsolution
associated with problem “t" by Lemma 4. We now modify our function g as follows. Let
;(x.l) be the new function such that:
(1) 9(x,s) = g(x,8) for x €8, s> wix),
(11) ;(X,l) > ys ~ C and ;(x,s) >us~C for xR and s & R, where C,
U and U are the constants in (7).
(14i4) ;(x.l) 20 for x€€R and all s smaller than a certain constant 8.
(iv) ;(x,s) hasg linear growth at -, i.e., ;(x,s) is like c¢s, c < 0, at ==, '
(v) g(x,8) is a c! function.
In view of (ii) we see that all eventual solutions of the modified problem (1‘:) with g
replaced by ; are bounded from below by w(x), see Lemma 4. So the solution of the
modified problem are the same as the onea of the original problem. Thus from now on we
assume that g has properties (i)-(v) abhove. Let us now look for solutions of “t) as
critical points of the functional
g =3 va1? - [ Gexow) - [ fu
defined in H;. .

Lemma 9., The functional J satisfies the Palais-Smale condition. .

Proof. Case 1. N > 3, (N + 1)/(N - 1) <o € (N + 2)/(N - 2). Let (un) be a sequence in
1
Hy such that ld(un)l < C and J'(nn) + 0. We claim (u ) contains a convergent

1
subsequence in ﬂ;. From J'(un) + 0 we have for all v e Hy

(16) lf Vuan -I g(x.un)v -I fv| < enIvIH1 ' n

Let 8, < 8; be such that G(x,s) € 0 for s < 8, and define

[un-nz if un<sz
' -
n

( 0 if un>s2

=10~
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Taking v = w_ in (16):

n

2
an / IanI -J glx,u Jw < f fw + enlwan1

and since gq(x,s) > 0 for s < s we obtain that 1w I € C. It then follows from (17)

2 n H‘
that
118) -/ glx,udu € C+clul
un<92 H

where we have used the fact that g has linear growth at -~=. Next from IJ(un)I € C it
follows

2
+
/ (Vo 1" < c+ 2/ Gixu ) +2 J fu <c+ 2/ Glx,u ) + Clu ¥

unbsJ H

1

where 84 > 0 is chosen from (6) in such a way that

+ -
ag(x,s) ~ 6G(x,s) > --t:szg(x,s)z/N 1, xeq, s> 8,
for some given € > 0. Then
2 2 2e 2 2/(N+1)
(19) / 'v“n' cce+chul  +3 )i v 9lx,u ) + 3 / ung(x,un)
H un>s3 un>s3

Using (18) the first integral in the right side of (19) can be taken all over §, which is

then estimated using (16) with v = up:

2 2 2 2¢ 2, 2/(N+1)
J |v“n| <cC+ clunl 1 *3 / qun| +5 J u gix,u )
H u ’s
n 3
or
{20) J1vuPccree ] ulg(x,u )2/ (N*1)
n n n
u_»s
n 3
Now we claim that
(21) )i glx,u )¢ < C
u ?s
n 3

Indeed, it follows from (16) with v = ¢ that

-ean1 A, Jus-fatxue-frocn, -0 fusrc

-1%=
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which implies that [ “n’ and f g(x,un)o are bounded above. This gives (21) in view of

hypothesis (iii) on g. The integral in (20) is estimated using HSlder's inequality by

! 2/(N+1 =2/(N=1) 2(R+1)/(N=1), (N=1)/(N+1)
“ q(x,un)O) /¢ )U ¢ /( )“n( /¢ ))( (V4
u_>s u s
n 3 n 3
which is then bounded by cIVu“l2
L
is uniformly bounded. So we may assume that u, > u in Ii; and u, +u

In the case G < (N + 2)/(N - 2) this follows

2 using the Hardy-Sobolev inequality [7]. This shows

that 'v“n'
2

!.2

+ Now we claim that un*u in H;.

readily from the fact that J' is an operator of the form identity minus a compact

in L

operator. Although this is not true in the case o = (N + 2)/(N - 2) we can still prove
that u + u as follows. Let € > 0 be given. Then there is an s, such that

gix,s) < e-° for s > 8, Now using (16) with v = u, - u we have, with

c, > ul
n

1 Tul

[) 1’
51 H

2
I Vo - wi® < - ) VaV(u -w) + [ flu - u) + 2Ce +f gtx,u )u =) .

The first three terms in the above estimate go to zero as n + ®. We estimate the last
term by

clu-ul2+t:! uofun-uf

Taking this last integral over the whole of  with lunl replacing u,, and using

Holder's inequality we have finally

K 2 L - -
/ IV(un -u){“ ¢ -f vu Y(u -u) +Cly ~-ul , ¢+ 2c1sn +Cye

L
where C, is a constant independent of €. This proves the claim.
Cage 2. N >3, 6 < (N + 1)/(N - 1). This case is much simpler. Taking (16) with

v, and using property (iii) of g we obtain

2
(22) / 0 |“< c+ctut + g(x,u Ju_
H u >s
n 4
The integral on the right side is then estimated using Hardy-~Sobolev's inequality as above,
2

leading to a uniform bound for the L ~-norm of the gradient of . The convergence of a

subsequence follows as in Case 1.
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Case 3. N = 2. we proceed as in Case 2.

0

Proof of Theorem ! completed. In order to apply the mountain pass theorem it remains to

check that

1
(1) there is v € llo

(i) there is an r > 0 such that inf{J(u) : lu - “t' =r} > J(ut)

such that J(v) < J(ut),

To gee (i) we take Vv = R:
sy =32 8% - Gix,me) - R [ 10
From {7), Gix,s) > % 5s? - ¢ and we obtain
M) e -0 -cr-c
which gives the claim by taking R sufficiently large.
As for (ii) we proceed as follows. Using the fact that u,

J we have:

1 2
(23) Jtu, + V) - Iu) = rR AL -] [Glx,u, + v) = Gix,u) = glx,u )v]

is a critical point of

1
By Taylor’s formula, the expression into the brackets is 2 q;(x.ut)vz + r(x,v) where

[r{x,v)| < c(x,v)lvl2 if |vj <1 and e€(x,v) 0 as v + 0, On the other hand

+1
Irix,v)] € clvla for |v] > 1. Altogether

a+?
Ie(x, v € €lvl2 + clvl

which gives
[ irtx,vdlax € edvi? + aant®*! < etvt? ¢ cru®!
2 o+ 1 1
L L H #

Estimating (23) we obtain

1 2 _1 2 _ 2 L Ag)
J(ut +v) J(nt) > 2] 19v] 2! q;(x,ut)v vt - civt

which in view of Lemma 8 (and the Remark right after it) is bhounded below by

+
clvl21 - clvl°11
H H H

have claim (ii). The final step is the regularity of this solution obtained by the

1

mountain pass theorem. In the case 0 < (N + 2)/(N = 2) this follows readily via a

« Soif vl _ = r and r is small the quadratic term dominates and we

standard bootstrap argument. In the case 0 = (N + 2)/(N = 2), this follows from Theorem

10 proved in the next section.
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3. A RBGULARITY RESULT. In the present section we establish a regularity result for l;
solutions of aemilinear elliptic equations of second order. The growth of the
nonlinesrity gi(x,u) as u + ® prevents a direct use of bootstrap arguments. The main
ideas of the proof below are borrowed from Br8zis-Kato {1t] where they treat the linear

Schridinger equation.

Theorem 10. let g : 8 X R+ R be a Carathbodory function such that

lg(x,8)| € clllu + c(x)

2N/(N-2)

where o0 = (N + 2)/(N = 2), ¢ is a constant and c(x) is an L function. If

1
ue Ho(n) is a solution of

(24) -8u = g{x,u) in G, u =0 on 3N

then u € P for some p > 2N/(N - 2}.

Remark. Once we know u € LP -tor some p > 2N/(N - 2) then a bootstrap argument shows
1

that necC ,u. If more regularity of g is required (for example C' in the situation

of the previous section) then u @ cz'a.

Proof. let x € C;(R) with compact support containing a neighborhood of zero. Then g
decomposes as g = gy + g, where 91(x,s) = y{s)g(x,s) and qz(x,l) = (1 - x(s))g(x,s).

Consequently g(x,u(x)) where u € H1

o is the given solution of (24) can be written as

gix,ul(x)) = a(x)ulx) + bix)

where aix) e L"/z and b(x) e LGl(u-z). Now we use the following lemma from Brfzis-~
Kato {11, p. 139): "Given a(x) e L"/Z and € > 0 there is a constant ke > 0 such that
(28) J ll(x)lu2 <¢f qulz + kt J u2 . Vue H; "

Let k, be the constant in (25) corresponding to € = 1. It is easy to see that, for
k > k4, the problem

“Av + kv = a(x)v in @, v =0 on 3Q
has only the trivial solution v = 0. 8o the problem

(26) -Av + kv = a(x)v + b(x) + ku(x) 4in @, v=0 on aQ

-14-




has a unique solution v, which happens to be v = u. We now aim at proving that the

1
unique solution v € !o of the problea

-Av + kx = a{x)v + d(x) in @, v=0 on 30

20/ (N=2)

where d(x) is an L function, is in some LP with p > 2N/(N - 2). For that

matter we truncate a(x) as follows
-4 , if a(x) € -¢
a.(x) ={ alx) , if Jalx)| < 2
2 s if alx) > 2

We observe that (25) holds with a replaced by a, and kc is independent of

L
L, £ + 4=, The problem

(27) Ay + kv = nz(x)v +d(x) in 2, v=0 on N

1
has also a unique solution \f) e Ho. It follows from (25) that lvll 1 € C for all 2.
H
We claim that \ + v in H;, as L » 4», From (26) and (27) we obtain

vi

2
-v) + clal - .'LN/ZIVl - L2N/(N-2)

2 2
J 19w, - o® + xJ LA J a,lv,

and the result follows applying (25) with € > 0 sufficiently small, using Sobolev

embedding and the fact that \/) + v in Lz- Next we claim that the solution vl of (27)

is in some LP with p > 2N/(N - 2) and that

(28) Iv‘I P < constant independent of 1L .
L

We now truncate V‘

-n ’ vz(x) < =-n

v n(x) = vz(x) ., Aif Ivz(x)l <n

L,

n . if vl(X) >n

-«
NL . To simplify our notation let us call w = v and

obtaining functions in H' A

[

- 1
LA The function vnlvnlq ‘, for any q > 1, 4is {n H

on 0 and

-1 -1
V(wnluhlq ) - qlvnlq an .

Multiplying equation (27) by wnl\vnl"’.1 and integrating by parts we obtain

-15- ?
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49 2 .2 q-1 . q-1 q-1
I J v tv  “01% ¢ % [ v tv Jagm v 1777 ¢ [ aw v |

The second integral in the left side of (29) is positive and will give us no problems. The
second integral in the right side of (29) is estimated by

( 1TV o @@

.(N+2)/(l-2) taking (and we shall assume from now

L/ /-2y
on) q+ 1= 2N/(N - 2), and consequently bounded independent of L. We now estimate the

which is bounded by &1 1

first integral in the right side of (29) by

(30) [+ f <o f Ty lagltw 17"
lwi>n lwli¢n {wion .

The second integral in the right side of (30) is estimated using (25) by

a1
2 .,2 1
e f W tw ) 20 ex, f 1w (T

All this information used in (29) leads to

a=t

2.2
J 19 e ) © )

<c+tf 1w ! .
{wi{on

where C is independent of £ and n. Making n + +», and using Sobolev emhedding we

have

(q+1);';';
<

2 AL AT ST 7 - A AT BN V53 Y 1

(3 1im sup [ v, c.

new

Since wn *w in LG/("z), it follows from (31), using reflexivity of P spaces

plat /=2y p=(q+ NN - 2) and

S e e TS §

So (20) is proved with

that w e

q+1=2M/(N - 2). Pinally to prove that v € IP we use the same argument as above,

since vy * v in L”/(N-Z) and the p~norms of v’. are uniformly bounded. a
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